MathTV Logo COURSES
 
CHOOSE A COURSE
MathTV Logo

Search Results
Math Topics

High School Algebra 2
Sequences and Series

1
More About Sequences

Problem  1
practice icon

Find the first \(4\) terms of the sequence whose general term is \(a_n=2n-1\)

Choose instructor to watch:
Mr. Perez
Mr. Perez
Betsy cc
Betsy
Brooke
Brooke
Mr. Martinez espanol spanish
Mr. Martinez
Problem  2
practice icon

Find the first \(4\) terms of the sequence whose general term is \(a_n=\displaystyle\frac{1}{n+1}\)

Choose instructor to watch:
Mr. Perez
Mr. Perez
Stefanie cc
Stefanie
Brooke
Brooke
Cynthia espanol spanish
Cynthia
Problem  3
practice icon

Find the \(5^{\text{th}}\) and \(6^{\text{th}}\) terms of the sequence whose general term is \(a_n=\displaystyle\frac{(-1)^n}{n^2}\)

Choose instructor to watch:
Betsy cc
Betsy
Preston cc
Preston
Mr. Martinez espanol spanish
Mr. Martinez
Problem  4
practice icon

Find the first \(4\) terms of the sequence given recursively by \(a_1=4\) and \(a_n=5a_{n-1}\)

Choose instructor to watch:
Stefanie cc
Stefanie
CJ cc
CJ
Cynthia espanol spanish
Cynthia
Problem  5

Find the formula for the \(n\)th term for \(2, 8, 18, 32, \ldots\)

Choose instructor to watch:
Betsy cc
Betsy
Preston cc
Preston
Mr. Martinez espanol spanish
Mr. Martinez
Problem  6
practice icon

Find the general term for \(2, \displaystyle\frac{3}{8}, \displaystyle\frac{4}{27}, \displaystyle\frac{5}{64}, \ldots\)

Choose instructor to watch:
Stefanie cc
Stefanie
CJ cc
CJ
Cynthia espanol spanish
Cynthia

2
Series

Problem  1
practice icon

Expand and simplify \(\displaystyle\sum_{i=1}^{5} \left(i^2-1\right)\)

Choose instructor to watch:
Betsy cc
Betsy
Preston cc
Preston
Mr. Martinez espanol spanish
Mr. Martinez
Problem  2
practice icon

Expand and simplify \(\displaystyle\sum_{i=3}^{6}(-2)^i\)

Choose instructor to watch:
Stefanie cc
Stefanie
CJ cc
CJ
Cynthia espanol spanish
Cynthia
Problem  3
practice icon

Expand \(\displaystyle\sum_{i=2}^{5}\left(x^i-3\right)\)

Choose instructor to watch:
Betsy cc
Betsy
Preston cc
Preston
Mr. Martinez espanol spanish
Mr. Martinez
Problem  4
practice icon

Write with summation notation \(1+3+5+7+9\)

Choose instructor to watch:
Stefanie cc
Stefanie
CJ cc
CJ
Cynthia espanol spanish
Cynthia
Problem  5
practice icon

Write with summation notation \(3+12+27+48\)

Choose instructor to watch:
Betsy cc
Betsy
Preston cc
Preston
Mr. Martinez espanol spanish
Mr. Martinez
Problem  6
practice icon

Write with summation notation \(\displaystyle\frac{x+3}{x^3}+ \displaystyle\frac{x+4}{x^4}+ \displaystyle\frac{x+5}{x^5}+ \displaystyle\frac{x+6}{x^6}\)

Choose instructor to watch:
Julieta cc
Julieta
CJ cc
CJ
Cynthia espanol spanish
Cynthia
Mini Lecture
practice icon

Mini Lecture
Expand and simplify.

  1. \(\displaystyle\sum_{i=1}^{4}(2t+4)\)

  2. \(\displaystyle\sum_{i=3}^{6}(-2)^i\)

  3. \(\displaystyle\sum_{i=3}^{6}(x+i)^i\)

Write with summation notation.

  1. \(\displaystyle\frac{3}{4}+\displaystyle\frac{4}{5}+\displaystyle\frac{5}{6}+\displaystyle\frac{6}{7}+\displaystyle\frac{7}{8}\)

  2. \(4+8+16+32+64\)

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague

3
Arithmetic Sequences

Problem  1
practice icon

Give the common difference \(d\) for the arithmetic sequence \(4, 10, 16, 22, \ldots\)

Choose instructor to watch:
Betsy cc
Betsy
Preston cc
Preston
Mr. Martinez espanol spanish
Mr. Martinez
Problem  2
practice icon

Find the common difference for \(100, 93, 86, 79, \ldots\)

Choose instructor to watch:
Stefanie cc
Stefanie
CJ cc
CJ
Cynthia espanol spanish
Cynthia
Problem  3
practice icon

Find the common difference for \(\displaystyle\frac{1}{2}, 1, \displaystyle\frac{3}{2}, 2, \ldots\)

Choose instructor to watch:
Betsy cc
Betsy
Preston cc
Preston
Mr. Martinez espanol spanish
Mr. Martinez
Problem  4
practice icon

Find the general term for \(7, 19, 13, 16, \ldots\)

Choose instructor to watch:
Stefanie cc
Stefanie
CJ cc
CJ
Cynthia espanol spanish
Cynthia
Problem  5

Find the general term of the arithmetic progression whose \(3^{\text{rd}}\) term \(a_3\) is \(7\) and \(8^{\text{th}}\) term \(a_8\) is \(17\).

Choose instructor to watch:
Betsy cc
Betsy
Preston cc
Preston
Mr. Martinez espanol spanish
Mr. Martinez
Problem  6
practice icon

Find the sum of the first \(10\) terms of \(2, 10, 18, 26, \ldots\)

Choose instructor to watch:
Stefanie cc
Stefanie
CJ cc
CJ
Cynthia espanol spanish
Cynthia
Mini Lecture
practice icon

Mini Lecture
Is the sequence arithmetic?

  1. \(50, 45, 40, \ldots\)

  2. \(1, 4, 9, 16, \ldots\)

  3. If \(a_1=3\) and \(d=4\), find \(a_n\) and \(a_{24}\)

  4. If \(a_6=17\) and \(a_{12}=29\), find \(a_1\), \(d\), and \(a_{30}\)

  5. Find \(S_{100}\) for \(5, 9, 13, 17, \ldots\)

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague

4
Geometric Sequences

Problem  1
practice icon

Find the common ratio for \(\displaystyle\frac{1}{2}, \displaystyle\frac{1}{4}, \displaystyle\frac{1}{8}, \displaystyle\frac{1}{16}, \ldots\)

Choose instructor to watch:
Betsy cc
Betsy
Preston cc
Preston
Mr. Martinez espanol spanish
Mr. Martinez
Problem  2
practice icon

Find the common ratio for \(\sqrt{3}, 3, 3\sqrt{3}, 9, \ldots\)

Choose instructor to watch:
Stefanie cc
Stefanie
CJ cc
CJ
Cynthia espanol spanish
Cynthia
Problem  3
practice icon

Find the general term for \(5, 10, 20, \ldots\)

Choose instructor to watch:
Betsy cc
Betsy
Preston cc
Preston
Mr. Martinez espanol spanish
Mr. Martinez
Problem  4
practice icon

Find the tenth term of the sequence \(3, \displaystyle\frac{3}{2}, \displaystyle\frac{3}{4}, \displaystyle\frac{3}{8}, \ldots\)

Choose instructor to watch:
Stefanie cc
Stefanie
CJ cc
CJ
Cynthia espanol spanish
Cynthia
Problem  5

Find the general term of the geometric progression whose \(4^{\text{th}}\) term is \(16\) and whose \(7^{\text{th}}\) term is \(128\)

Choose instructor to watch:
Betsy cc
Betsy
Preston cc
Preston
Mr. Martinez espanol spanish
Mr. Martinez
Problem  6
practice icon

Find the sum of the first \(10\) terms of \(5, 15, 45, 135, \ldots\)

Choose instructor to watch:
Stefanie cc
Stefanie
CJ cc
CJ
Cynthia espanol spanish
Cynthia
Problem  7
practice icon

Find the sum of the infinite series \(\displaystyle\frac{1}{5}+ \displaystyle\frac{1}{10}+ \displaystyle\frac{1}{20}+ \displaystyle\frac{1}{40}+ \ldots\)

Choose instructor to watch:
Betsy cc
Betsy
Preston cc
Preston
Mr. Martinez espanol spanish
Mr. Martinez
Problem  8

Show that \(0.999\ldots\) is equal to \(1\).

Choose instructor to watch:
Stefanie cc
Stefanie
CJ cc
CJ
Julieta espanol spanish
Julieta
Problem  9
practice icon

Mini Lecture
Is the sequence geometric?

  1. \(1, 5, 25, 125, \ldots\)

  2. \(\displaystyle\frac{1}{2}, \displaystyle\frac{1}{6}, \displaystyle\frac{1}{18}, \displaystyle\frac{1}{54}, \ldots\)

  3. If \(a_1=4\) and \(r=3\), find \(a_n, a_{20},\) and \(S_{20}\)

  4. Find \(a_{10}\) and \(S_{10}\) for \(\sqrt{2}, 2, 2\sqrt{2}, \ldots\) \(\displaystyle\frac{1}{2}+\displaystyle\frac{1}{4}+\displaystyle\frac{1}{8}+\ldots=\)?

  5. Show that \(0.444\ldots=\displaystyle\frac{1}{9}\)

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague

5
The Binomial Expansion

Problem  1

Calculate the following binomial coefficients: \(\displaystyle\binom{7}{5}\), \(\displaystyle\binom{6}{2}\), \(\displaystyle\binom{3}{0}\)

Choose instructor to watch:
Betsy cc
Betsy
Preston cc
Preston
Mr. Martinez espanol spanish
Mr. Martinez
Problem  2
practice icon

Expand \((x-2)^3\)

Choose instructor to watch:
Breylor cc
Breylor
Stefanie cc
Stefanie
CJ cc
CJ
Cynthia espanol spanish
Cynthia
Problem  3
practice icon

Expand \((3x+2y)^4\)

Choose instructor to watch:
Betsy cc
Betsy
Preston cc
Preston
Mr. Martinez espanol spanish
Mr. Martinez
Problem  4
practice icon

Find the first three terms in the expansion of \((x+5)^9\)

Choose instructor to watch:
Stefanie cc
Stefanie
CJ cc
CJ
Cynthia espanol spanish
Cynthia
Problem  5
practice icon

Find the fifth term in the expansion of \((2x+3y)^{12}\)

Choose instructor to watch:
Betsy cc
Betsy
Preston cc
Preston
Mr. Martinez espanol spanish
Mr. Martinez
Problem  6

Mini Lecture
Expand.

  1. \((x+2)^4\)

  2. \((4x-3y)^3\)

  3. Write the first four terms: \((x-y)^{10}\)

  4. Write the first two terms: \((x+2)^{100}\)

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague

6
Summary

Problem  1

Write the first five terms of the sequence with the following general term: \[a_n=3n-5\]

Choose instructor to watch:
Joshua cc
Joshua
Sirena cc
Sirena
Problem  2

Write the first five terms of the sequence with the following general term: \[a_1=3,\, a_n=a_{n-1}+4,\, n>1\]

Choose instructor to watch:
Sirena cc
Sirena
Joshua cc
Joshua
Problem  3

Write the first five terms of the sequence with the following general term: \[a_n=n^2+1\]

Choose instructor to watch:
Joshua cc
Joshua
Sirena cc
Sirena
Problem  4

Write the first five terms of the sequence with the following general term: \[a_n=2n^3\]

Choose instructor to watch:
Joshua cc
Joshua
Sirena cc
Sirena
Problem  5

Write the first five terms of the sequence with the following general term: \[a_n=\frac{n+1}{n^2}\]

Choose instructor to watch:
Joshua cc
Joshua
Sirena cc
Sirena
Problem  6

Write the first five terms of the sequence with the following general term: \[a_1=4,\, a_n=-2a_{n-1},\, n>1\]

Choose instructor to watch:
Joshua cc
Joshua
Sirena cc
Sirena
Problem  7

Give the general term of this sequence: \[6, 10, 14, 18, \ldots\]

Choose instructor to watch:
Mr. Neufeld cc
Mr. Neufeld
Sirena cc
Sirena
Problem  8

Give the general term for this sequence: \[1, 2, 4, 8, \ldots\]

Choose instructor to watch:
Mr. Neufeld cc
Mr. Neufeld
Sirena cc
Sirena
Problem  9

Give the general term for this sequence: \[\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots\]

Choose instructor to watch:
Mr. Neufeld cc
Mr. Neufeld
Sirena cc
Sirena
Problem  10

Give the general term for this sequence: \[-3, 9, -27, 81, \ldots\]

Choose instructor to watch:
Mr. Neufeld cc
Mr. Neufeld
Sirena cc
Sirena
Problem  11

Expand and simplify each of the following:

  1. \(\displaystyle\sum_{i=1}^5 (5i+3)\)

  2. \(\displaystyle\sum_{i=3}^5 (2^i-1)\)

  3. \(\displaystyle\sum_{i=2}^6 \left(i^2+2i\right)\)

Choose instructor to watch:
Mr. Neufeld cc
Mr. Neufeld
Sirena cc
Sirena
Problem  12

Find the first term of an arithmetic progression if \(a_5=11\) and \(a_9=19\).

Choose instructor to watch:
Mr. Neufeld cc
Mr. Neufeld
Sirena cc
Sirena
Problem  13

Find the second term of a geometric progression if \(a_3=18\) and \(a_5=162\).

Choose instructor to watch:
Mr. Neufeld cc
Mr. Neufeld
Gordon cc
Gordon
Sirena cc
Sirena
Problem  14

Find the sum of the first \(10\) terms of this arithmetic progression: \[5, 11, 17, \ldots\]

Choose instructor to watch:
Mr. Neufeld cc
Mr. Neufeld
Sirena cc
Sirena
Problem  15

Find the sum of the first \(10\) terms of this arithmetic progression: \[25, 20, 15, \ldots\]

Choose instructor to watch:
Mr. Neufeld cc
Mr. Neufeld
Sirena cc
Sirena
Problem  16

Write a formula for the sum of the first \(50\) terms of this geometric progression: \[3, 6, 12, \ldots\]

Choose instructor to watch:
Mr. Neufeld cc
Mr. Neufeld
Sirena cc
Sirena
Problem  17

Find the sum of \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{18}+\dfrac{1}{54}+\ldots\)

Choose instructor to watch:
Mr. Neufeld cc
Mr. Neufeld
Sirena cc
Sirena
Problem  18

Use the binomial formula to expand: \[(x-3)^4\]

Choose instructor to watch:
Mr. Neufeld cc
Mr. Neufeld
Gordon cc
Gordon
Sirena cc
Sirena
Problem  19

Use the binomial formula to expand: \[(2x-1)^5\]

Choose instructor to watch:
Mr. Neufeld cc
Mr. Neufeld
Sirena cc
Sirena
Problem  20

Find the first \(3\) terms in the expansion of \[(x-1)^{20}\]

Choose instructor to watch:
Mr. Neufeld cc
Mr. Neufeld
Sirena cc
Sirena
Problem  21

Find the sixth term in: \[(2x-3y)^8\]

Choose instructor to watch:
Mr. Neufeld cc
Mr. Neufeld
Sirena cc
Sirena