MathTV Logo COURSES
 
CHOOSE A COURSE
MathTV Logo

Search Results
Math Topics

High School Algebra 2
Functions and Graphs

1
Paired Data and Graphing

Problem  1
practice icon

Plot the ordered pairs \((3, 4)\), \((-3, 4)\), \((-3, -4)\), and \((3, -4)\).

Choose instructor to watch:
Molly S. cc
Molly S.
Preston cc
Preston
Betsy cc
Betsy
David cc espanol spanish
David
Problem  2
Choose instructor to watch:
Gordon cc
Gordon
Katherine cc
Katherine
Julieta cc espanol spanish
Julieta
Problem  3
practice icon

Graph \(y=-\displaystyle\frac{1}{3}x\)

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Betsy cc
Betsy
Preston cc
Preston
Mr. Martinez espanol spanish
Mr. Martinez
Problem  4
practice icon

Find the \(x\)- and \(y\)-intercepts for \(3x-2y=6\), and graph.

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Betsy cc
Betsy
Preston cc
Preston
David cc espanol spanish
David
Problem  5
practice icon

Find the intercepts for \(y=x^2-4\).

Choose instructor to watch:
Stefanie cc
Stefanie
Betsy cc
Betsy
Preston cc
Preston
Mr. Martinez espanol spanish
Mr. Martinez
Problem  6
practice icon
Choose instructor to watch:
Stefanie cc
Stefanie
Gordon espanol spanish
Gordon
Problem  7
practice icon
Choose instructor to watch:
Stefanie cc
Stefanie
Betsy cc
Betsy
Preston cc
Preston
Problem  8
practice icon

Your community decides to set up a bicycle rental program. They charge an annual subscription fee of $5 and then $3 an hour each time you rent a bicycle. (A fraction of an hour is charged as the corresponding fraction of $3).

a. Make a table of values showing the cost, \(C\), of renting a bike for various lengths of time, \(t\).

b. Plot the points on a graph. Draw a curve through the data points.

c. Write an equation for \(C\) in terms of \(t\).

Choose instructor to watch:
Mr. Neufeld cc
Mr. Neufeld
Kendra cc
Kendra
Gordon espanol spanish
Gordon
Mini Lecture

Mini Lecture
Graph.

  1. \(4x+5y=20\)

  2. \(y=3x-2\)

  3. \(y=-\displaystyle\frac{2}{3}+1\)

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague

2
Introduction to Functions and Relations

Problem  1
practice icon

Make a table and graph for \(y=7.5x\) for \(0\leq x \leq 40\).

Choose instructor to watch:
Stefanie cc
Stefanie
Betsy cc
Betsy
Preston cc
Preston
Mr. Martinez cc espanol spanish
Mr. Martinez
Problem  2
practice icon

State the domain and range for \(y=7.5x\), \(0\leq x\leq 40\).

Choose instructor to watch:
Stefanie cc
Stefanie
Betsy cc
Betsy
Preston cc
Preston
Julieta cc espanol spanish
Julieta
Problem  3
practice icon

Use the equation \(h=32t-16t^2\) for \(0\leq t \leq 2\) to construct a table to give the height at quarter-second intervals, then graph the function.

Choose instructor to watch:
Stefanie cc
Stefanie
Betsy cc
Betsy
Preston cc
Preston
Mr. Martinez cc espanol spanish
Mr. Martinez
Problem  4

The table shows the prices of used Ford Mustangs in the local paper. Figure 7 is a scatter diagram of those cars. Why is the data not a function?

Choose instructor to watch:
Aaron cc
Aaron
Stefanie cc
Stefanie
CJ cc
CJ
Problem  5
practice icon

Graph \(x=y^2\)

Choose instructor to watch:
Stefanie cc
Stefanie
Betsy cc
Betsy
CJ cc
CJ
Mr. Martinez cc espanol spanish
Mr. Martinez
Problem  6
practice icon

Graph \(y=\displaystyle\frac{1}{x}\)

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Stefanie cc
Stefanie
Preston cc
Preston
Mr. Martinez cc espanol spanish
Mr. Martinez
Problem  7
practice icon

Graph \(y=\sqrt{x}\) and \(y=\sqrt[3]{x}\)

Choose instructor to watch:
Katherine cc
Katherine
Betsy cc
Betsy
CJ cc
CJ
Julieta cc espanol spanish
Julieta
Problem  8
practice icon

The manager at Albert’s Appliances has $3000 to spend on advertising for the next fiscal quarter. A 30-second spot on television costs $150 per broadcast, and a 30-second radio ad costs $50.
a.  The manager decides to buy x television ads and y radio ads. Write an equation relating x and y.
b. Make a table of values showing several choices for x and y.
c.  Plot the points from your table, and graph the equation.

Choose instructor to watch:
Sirena cc
Sirena
Gordon espanol spanish
Gordon
Mini Lecture

Mini Lecture
Are these functions?

  1. \(\{(7,-1), (3,-1), (7,4)\}\)

  2. \(\{(4,1), (1,4), (-1,-4)\}\)

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague

3
Function Notation and More Graphing

Problem  1
practice icon

If \(f(x)=7.5x\), find \(f(0)\), \(f(10)\), \(f(20)\).

Choose instructor to watch:
Molly S. cc
Molly S.
Betsy cc
Betsy
Octabio cc
Octabio
Mr. Martinez cc espanol spanish
Mr. Martinez
Problem  2
practice icon

If \(f(x)=3x^2+2x-1\), find \(f(0)\), \(f(3)\), and \(f(-2)\).

Choose instructor to watch:
Stefanie cc
Stefanie
Betsy cc
Betsy
Preston cc
Preston
Cynthia espanol spanish
Cynthia
Problem  3
practice icon

Is \(f(x)=4x-1\) and \(g(x)=x^2+2\), then find \(f(x)\) and \(g(x)\) when \(x=5\), \(-2\), \(0\), \(z\), \(a\), and \(a+3\).

Choose instructor to watch:
Betsy cc
Betsy
Preston cc
Preston
Julieta cc espanol spanish
Julieta
Problem  4
practice icon

\(f=\{(-2,0), (3,-1), (2,4), (7,5)\}\) find \(f(-2)\), \(f(3)\), \(f(2)\), and \(f(7)\)

Choose instructor to watch:
Betsy cc
Betsy
Preston cc
Preston
Mr. Martinez espanol spanish
Mr. Martinez
Problem  5
practice icon

If \(f(x)=2x^2\) and \(g(x)=3x-1\), find \(f[g(2)]\) and \(g[f(2)]\)

Choose instructor to watch:
Betsy cc
Betsy
Preston cc
Preston
Julieta cc espanol spanish
Julieta
Problem  6
practice icon

If it takes Lorena \(t\) minutes to run a mile, then her average speed is \(s(t)=\displaystyle\frac{60}{t}\). Find \(s(10)\) and \(s(8)\).

Choose instructor to watch:
Betsy cc
Betsy
Preston cc
Preston
Gordon cc espanol spanish
Gordon
Problem  7
practice icon

A painting is purchased for \(\$125\). If its value doubles every \(5\) years, then its value is \(V(t)=125\cdot2^{\frac{t}{5}}\). Find \(V(5)\) and \(V(10)\)

Choose instructor to watch:
Breylor cc
Breylor
Stefanie cc
Stefanie
Winston cc
Winston
Mr. Martinez cc espanol spanish
Mr. Martinez
Problem  8

A balloon has the shape of a sphere with a radius of \(3\) inches. Use \(V(r)=\displaystyle\frac{4}{3}\pi r^3\) and \(S(r)=4\pi r^2\) to find the volume and the surface area.

Choose instructor to watch:
Aaron cc
Aaron
Stefanie cc
Stefanie
CJ cc
CJ
Julieta cc espanol spanish
Julieta
Problem  9

Mini Lecture
Let \(f(x)=2x-1\) and \(g(x)=x^2-4\) find

a. \(f(0)\) \(\quad\) b. \(f(1)\) \(\quad\) c. \(f(-1)\)
d. \(f(a)\) \(\quad\) e. \(g(0)\) \(\quad\) f. \(g(-2)\)
g. \(g(3)\) \(\quad\) h. \(g(t)\) \(\quad\) i. \(f(a+5)\)
j. \(f(x+h)\) \(\quad\) k. \(g(a-1)\) \(\quad\) l. \(g(f(x))\)
Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Mini Lecture

Mini Lecture
Let \(f(x)=2x^2-8\), find:

  1. \(f(0)\)

  2. \(f(-3)\)

  3. \(f(a)\)

  4. \(f(a-3)\)

  5. Graph \(f(x)=x^2\) and find \(f(1)\), \(f(2)\), and \(f(3)\).

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague
Problem  11

Mini Lecture
Let \(f(x)=2x-1\) and \(g(x)=x^2-4\) find

  1. Find \(x\) if \(f(x)=0\)

  2. Find \(x\) if \(g(x)=0\)

  3. Find \(x\) if \(f(x)=g(x)\)

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague

4
Transformations and Other Graphing Techniques

Problem  1
practice icon

Graph \(y=-\displaystyle\frac{1}{3}x+2\)

Choose instructor to watch:
Lauren cc
Lauren
Preston cc
Preston
Betsy cc
Betsy
David espanol spanish
David
Problem  2
practice icon

Graph \(y=-\displaystyle\frac{1}{3}x-4\)

Choose instructor to watch:
Stefanie cc
Stefanie
Betsy cc
Betsy
Preston cc
Preston
Mr. Martinez espanol spanish
Mr. Martinez
Problem  3
Choose instructor to watch:
Katherine cc
Katherine
Gordon cc
Gordon
CJ cc
CJ
Julieta cc espanol spanish
Julieta
Problem  4
practice icon

Graph \(y=x^2-4\)

Choose instructor to watch:
Stefanie cc
Stefanie
Betsy cc
Betsy
CJ cc
CJ
Julieta cc espanol spanish
Julieta
Problem  5
practice icon
Choose instructor to watch:
Jesse
Jesse
Stefanie cc
Stefanie
CJ cc
CJ
Julieta cc espanol spanish
Julieta
Problem  6
practice icon

Graph the following functions.

a. \(g(x) = \sqrt{x + 1}\)

b. \(h(x) = \frac{1}{(x - 3)^2}\)

Choose instructor to watch:
Gordon cc
Gordon
Katherine cc
Katherine
Julieta cc espanol spanish
Julieta
Problem  7

The function \(N = f(p)\) graphed in Figure \(15\) gives the number of people who have given eye pressure level \(p\) from a sample of \(100\) people with healthy eyes, and the function \(g\) gives us the number of people with pressure level \(p\) in a sample of \(100\) glaucoma patients.

a. Write a formula for \(g\) as a transformation of \(f\).

b. For what pressure readings could a doctor be fairly certain that a patient has glaucoma?

Choose instructor to watch:
Molly S. cc
Molly S.
Logan cc
Logan
Cynthia espanol spanish
Cynthia
Problem  8

Graph \(y = |x - 3| + 4\).

Choose instructor to watch:
Logan cc
Logan
Molly S. cc
Molly S.
Cynthia espanol spanish
Cynthia
Problem  9

The function \(A = f(t)\) graphed in Figure \(18\) gives a person’s blood alcohol level \(t\) hours after drinking a martini. Sketch a graph of \(g(t) = 2f(t)\) and explain what it tells you.

Choose instructor to watch:
Logan cc
Logan
Molly S. cc
Molly S.
Cynthia espanol spanish
Cynthia
Problem  10

Graph \(f(x) = \frac{1}{4}(x + 4)^2 + 2\).

Choose instructor to watch:
Molly S. cc
Molly S.
Octabio cc
Octabio
Cynthia espanol spanish
Cynthia
Octabio espanol spanish
Octabio
Mini Lecture
Choose instructor to watch:
Katherine
Katherine

5
Algebra and Composition with Functions

Problem  1
practice icon

If \(f(x)=4x^2+3x+2\) and \(g(x)=2x^2-5x-6\), find \(f+g\), \(f-g\), \(fg\), \(f/g\).

Choose instructor to watch:
Betsy cc
Betsy
Preston cc
Preston
Julieta cc espanol spanish
Julieta
Problem  2
practice icon

Let \(f(x)=4x-3\), \(g(x)=4x^2-7x+3\), and \(h(x)=x-1\). Find \(f+g\), \(fh\), \(fg\), and \(g/f\).

Choose instructor to watch:
Betsy cc
Betsy
Preston cc
Preston
Julieta cc espanol spanish
Julieta
Problem  3
practice icon

Let \(f(x)=4x-3\), \(g(x)=4x^2-7x+3\), and \(h(x)=x-1\). Find \((f+g)(2)\), \((fh)(-1)\), \((fg)(0)\), and \((g/f)(5)\).

Choose instructor to watch:
Betsy cc
Betsy
Preston cc
Preston
Mr. Martinez cc espanol spanish
Mr. Martinez
Problem  4
practice icon

A company produces and sells copies of an accounting program for home computers. The price they charge for the program is related to the number of copies sold by the demand function

\[p(x) = 35 - 0.1x\]

a. Find the revenue function.

b. If the cost function is \(C(x) = 8x + 500\), find the profit function.

Choose instructor to watch:
Betsy cc
Betsy
Gordon cc
Gordon
Cynthia espanol spanish
Cynthia
Problem  5
practice icon

If \(f(x)=x+5\) and \(g(x)=x^2-2x\), find \((f \circ g)(x)\) and \((g \circ f)(x)\)

Choose instructor to watch:
Molly S. cc
Molly S.
Betsy cc
Betsy
Preston cc
Preston
Octabio cc espanol spanish
Octabio
Problem  6

For temperatures greater than \(10^\circ\), the average daily number of soft drinks sold, \(s\) (in hundreds), in the a city depends on the temperature, \(t\), as \[s(t) = 1, 200 + 23t + 600(t - 10)^{1/3}\]

The number, in hundreds, of soft drink aluminum cans recycled, \(r\), depends on the number of soft drinks sold, \(s\), as \(r(s) = s^{3/4}\)

a. Give some reasonable numbers for the domain of the function \(s\).

b. How many cans are sold when the temperature is \(27^\circ C\)?

c. How many cans are recycled when the temperature is \(27^\circ C\)?

d. Suppose we want to use the Fahrenheit temperature scale, instead of the Celsius scale. How would the problem change?

Choose instructor to watch:
Gordon cc
Gordon
Katherine cc
Katherine
Mini Lecture

Mini Lecture

If \(f(x) = 3x - 5\), \(g(x) = x - 2\), and \(h(x) = 3x^2 - 11x + 10\) find:

\(1\). \((f + g)(x)\) \(2\). \(\frac{h}{g}(x)\) \(3\). \((fg)(3)\)

If \(f(x) = x^2 + 3x\) and \(g(x) = 4x - 1\), find:

\(4\). \((f \circ g)(0)\) \(5\). \((g \circ f)(0)\)

\(6\). \((f \circ g)(x)\) \(7\). \((g \circ f)(x)\)

Choose instructor to watch:
Mr. McKeague cc
Mr. McKeague

6
summary

Problem  1

Graph and identify the \(x\)-intercept, \(y\)-intercept, and slope: \[2x+y=6\]

Choose instructor to watch:
Kendra cc
Kendra
Gordon cc
Gordon
Problem  2

Graph and identify the \(x\)-intercept, \(y\)-intercept, and slope: \[y=-2x-3\]

Choose instructor to watch:
Joshua cc
Joshua
Lauren cc
Lauren
Problem  3

Graph and identify the \(x\)-intercept, \(y\)-intercept, and slope: \[y=\frac{3}{2}x+4\]

Choose instructor to watch:
Gordon cc
Gordon
Kendra cc
Kendra
Problem  4

Graph and identify the \(x\)-intercept, \(y\)-intercept, and slope: \[x=-2\]

Choose instructor to watch:
Joshua cc
Joshua
Kendra cc
Kendra
Problem  5

Give the equation of the line through \((-1,\,3)\) that has a slope \(m=2\).

Choose instructor to watch:
Gordon cc
Gordon
Kendra cc
Kendra
Problem  6

Give the equation of the line through \((3,-2)\) and \((4,-1)\).

Choose instructor to watch:
Joshua cc
Joshua
Kendra cc
Kendra
Problem  7

Line \(l\) contains the point \((5,-3)\) and has a graph parallel to the graph of \(2x-5y=10\). Find the equation for \(l\).

Choose instructor to watch:
Gordon cc
Gordon
Kendra cc
Kendra
Problem  8

Line \(l\) contains the point \((-1,-2)\) and has a graph perpendicular to the graph of \(y=3x-1\). Find the equation for \(l\).

Choose instructor to watch:
Joshua cc
Joshua
Kendra cc
Kendra
Problem  9

Give the equation of the vertical line through \((4,-7)\).

Choose instructor to watch:
Gordon cc
Gordon
Kendra cc
Kendra
Problem  10

Graph: \[3x-4y<12\]

Choose instructor to watch:
Joshua cc
Joshua
Kendra cc
Kendra
Problem  11

Graph: \[y\leq -x+2\]

Choose instructor to watch:
Gordon cc
Gordon
Kendra cc
Kendra
Mr. Martinez espanol spanish
Mr. Martinez
Problem  12

State the domain and range. Indicate whether the relation is a function: \[\left\{(-2,0),(-3,0),(-2,1)\right\}\]

Choose instructor to watch:
Gordon cc
Gordon
Kendra cc
Kendra
Problem  13

State the domain and range. Indicate whether the relation is a function: \[y=x^2-9\]

Choose instructor to watch:
Gordon cc
Gordon
Kendra cc
Kendra
Problem  14

Let \(f(x)=x-2\), \(g(x)=3x+4\) and \(h(x)=3x^2-2x-8\). Find: \(f(3)+g(2)\)

Choose instructor to watch:
Gordon cc
Gordon
Kendra cc
Kendra
Problem  15

Let \(f(x)=x-2\), \(g(x)=3x+4\) and \(h(x)=3x^2-2x-8\). Find: \(h(0)+g(0)\)

Choose instructor to watch:
Gordon cc
Gordon
Kendra cc
Kendra
Problem  16

Let \(f(x)=x-2\), \(g(x)=3x+4\) and \(h(x)=3x^2-2x-8\). Find: \((f\circ g)(2)\)

Choose instructor to watch:
Gordon cc
Gordon
Kendra cc
Kendra
Problem  17

Let \(f(x)=x-2\), \(g(x)=3x+4\) and \(h(x)=3x^2-2x-8\). Find: \((g\circ f)(2)\)

Choose instructor to watch:
Gordon cc
Gordon
Kendra cc
Kendra
Problem  18

Quantity \(y\) varies directly with the square of \(x\). If \(y\) is \(50\) when \(x\) is \(5\), find \(y\) when \(x\) is \(3\).

Choose instructor to watch:
Gordon cc
Gordon
Kendra cc
Kendra
Problem  19

Quantity \(z\) varies jointly with \(x\) and the cube of \(y\). If \(z\) is \(15\) when \(x\) is \(5\) abnd \(y\) is \(2\), find \(z\) when \(x\) is \(2\) and \(y\) is \(3\).

Choose instructor to watch:
Gordon cc
Gordon
Kendra cc
Kendra
Problem  20

The maximum load \((L)\) a horizontal beam can safely hold varies jointly with the width \((w)\) and the square of the depth \((d)\) and inversely with the length\((l)\). If a 10-foot beam with width \(3\) feet and depth \(4\) feet will safely hold up \(800\) pounds, how many pounds will a 12-foot beam with width \(3\) and depth \(4\) feet hold?

Choose instructor to watch:
Gordon cc
Gordon