Search ResultsMath Topics

Get Ready for Statistics: CorequisitesNegative Numbers, Opposites, Reciprocals, and Square Roots

Label the points on a number line\(-3.5, -1\displaystyle\frac{1}{4}, \displaystyle\frac{1}{2}, \displaystyle\frac{3}{4}, 2.5\).

Write \(\displaystyle\frac{3}{4}\) with denominator \(20\).

Factor \(525\) into the product of primes.

Reduce \(\dfrac{210}{231}\) to lowest terms.

Write each expression without absolute value symbols.

\(\lvert5\rvert\)

\(\lvert-5\rvert\)

\(\left\lvert-\displaystyle\frac{1}{2}\right\rvert\)

Simplify.

\(\lvert8-3\rvert\)

\(\left\lvert3\cdot 2^3+2\cdot 3^2\right\rvert\)

\(\lvert9-2\rvert-\lvert8-6\rvert\)

Find all x for which |x| = 3.

Give the opposite of each number.

\(5\)

\(-3\)

\(\displaystyle\frac{1}{4}\)

\(-2.3\)

Multiply \(\displaystyle\frac{3}{4}\cdot \displaystyle\frac{5}{7}\)

Multiply \(7\left(\displaystyle\frac{1}{3}\right)\)

Give the reciprocal of each number.

\(2\)

\(\displaystyle\frac{1}{3}\)

\(\displaystyle\frac{3}{4}\)

Find the following roots

\(\sqrt{36}\)

\(-\sqrt{36}\)

\(\sqrt{144}\)

Find the following roots.

\(\sqrt[3]{-8}\)

\(\sqrt[3]{-27}\)

\(\sqrt{-4}\)

\(-\sqrt{4}\)

\(\sqrt[4]{-16}\)

\(-\sqrt[4]{16}\)

Simplify \(\sqrt{25a^2}\), assume \(a\geq0\).

Simplify \(\sqrt{16a^2b^2}\), assume \(a\geq 0\) and \(b\geq 0\).

Use a calculator to find decimal approximations of each of the following, round to the nearest thousandth.

\(\sqrt{12}\)

\(2\sqrt{3}\)

\(\sqrt{45}\)

\(3\sqrt{5}\)

Simplify \(\sqrt{\dfrac{8}{3-1}}\)

Simplify \(\dfrac{12-4}{\dfrac{5}{\sqrt{9}}}\)

Evaluate the expression \(\sqrt{npq}\) if \(n=100\), \(p=0.4\), and \(q=1-p\).

MathTV Video Player

Oops. Content Missing

Modal title